skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hultgreen-Mena, Charlie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we find solutions of minimal [Formula: see text] gauged supergravity corresponding to Janus and RG-flow interfaces. We use holography to calculate symmetric and interface entanglement entropy as well as reflection coefficients and confirm that a recently proposed1inequality involving these quantities is satisfied for the solutions found here. 
    more » « less
    Free, publicly-accessible full text available September 20, 2026
  2. A bstract In this paper, we continue the study of Janus and RG-flow interfaces in three dimensional supergravity continuing the work presented in [1]. We consider $$ \mathcal{N} $$ N = 8 gauged supergravity theories which have a $$ \mathcal{N} $$ N = (4 , 4) AdS 3 vacuum with D 1 (2 , 1; α ) × D 1 (2 , 1; α ) symmetry for general α . We derive the BPS flow equations and find numerical solutions. Some holographic quantities such as the entanglement entropy are calculated. 
    more » « less
  3. A bstract In this paper, we construct Janus-type solutions of three-dimensional gauged supergravity with sixteen supersymmetries. We find solutions which correspond to interfaces between the same CFT on both sides, as well as RG-flow interfaces between CFTs with different numbers of supersymmetries and central charges. The solutions are obtained by solving the flow equations derived from the supersymmetry variations, and they preserve some fraction of the supersymmetries of the AdS 3 vacua. 
    more » « less